

1000BASE-BX SFP 1490nmTX/1550nmRX 120km DOM

Transceiver

Features

- Operating data rate Up to 1.25Gb/s
- Two types:
 - A:1490nm FP transmitter /1550nm receiver
 - B:1550nmDFB transmitter/1490nm receiver
- Up to 120km on 9/125µm SMF
- Hot-pluggable SFP footprint
- BIDI LC/UPC type pluggable optical interface
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Support Digital Diagnostic Monitor interface
- Single +3.3V power supply
- Case operating temperature:

Commercial: 0°C ~ 70°C

- Extended: -20 $^{\circ}$ C ~ 85 $^{\circ}$ C
- Industrial: -40°C ~ 85°C
- Compliant with SFP MSA Specification
- Compliant with SFF-8472
- Compliant with IEEE 802.3ah

Application

- Switch to Switch Interface
- Fast Ethernet
- Switched BacDFB Laser(TX:1490nm)
- kplane Applications
- Router/Server Interface
- Other Optical Links

Description

Gearlink's GCS9L0C45 SFP transceiver is compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the 1490nm DFB laser (the 1550nm DFB laser) and the APD/TIA. The module data link up to 120km in 9/125um Single-mode fiber.

This transceiver meets the Small Form Pluggable (SFP) industry standard package utilizing an integral LC-Bi-dirictional optical interface connector. An enhanced Digital Diagnostic Monitoring Interface compliant with SFF-8472 has been incorporated into the transceiver. It allows real time access to the transceiver operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage by reading a built-in memory with I²C interface.

The optical output can be disabled by a LVTTL logic high-level input of Tx Disable, and the system also can disable the module via I²C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I²C register access.

Product Specifications

General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
Bit Rate	BR			1.25	Gb/sec
Max.Supported Link Length	Lmax			120	km

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Storage Temperature	Ts	-40		85	°C	
Storage Ambient Humidity	HA	5		95	%	
Power Supply Voltage	Vcc	-0.5		4	V	
Signal Input Voltage		-0.3		Vcc+0.3	V	
Receiver Damage Threshold		+3			dBm	
Lead Soldering Temperature/Time	T _{sold}			260/10	°C/sec	Note 1
Lead Soldering Temperature/Time	T _{sold}			360/10	°C/sec	Note 2

Notes:

1.Suitable for wavesoldering.

2.Only for soldering by iron.

Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
		0		70		GCS9L0C45- C
Case Operating Temperature	T _{case}	-20		85	°C	GCS9L0C45-E
		-40		85		GCS9L0C45- I

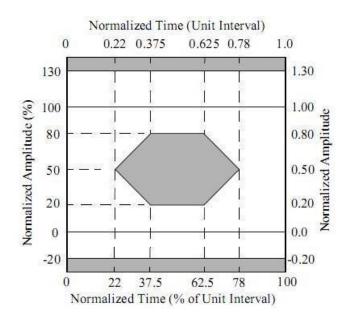
HA	5		70	%	Non-condensing		
V _{CC}	3.13	3.3	3.47	V			
Icc			280	mA			
		1250/1250		Mbps	TX Rate/RX Rate		
			120	km			
	Sir	ngle mode fib	er		9/125µm G.652		
Transmitter							
I _{CC}			А	mA	Note 1		
V _{DISH}	2		Vcc+0.3	V	LVTTL		
V _{DISL}	0		0.8	V	LVTTL		
V _{TxFH}	2		Vcc+0.3	V	LVTTL		
V_{TxFL}	0		0.8	V	LVTTL		
Receiver							
I _{CC}			В	mA	Note 1		
VLOSH	2		Vcc+0.3	V	LVTTL		
VLOSL	0		0.8	V	LVTTL		
	V _{CC} I _{CC} I _{CC} V _{DISH} V _{DISL} V _{TxFH} V _{TxFL} I _{CC} V _{LOSH}	V _{CC} 3.13 I _{CC} 3.13 I _{CC} Sin Tr I I _{CC} V VDISH 2 VDISL 0 VTxFH 2 V _{TxFL} 0 I _{CC} I I _{CC} I V _{LOSH} 2	V _{CC} 3.13 3.3 Icc 1250/1250 Icc 1250/1250 Single mode fib Single mode fib Transmitter Icc Icc Icc Volish 2 Volish 0 VTxFH 2 VTxFL 0 Icc Icc Volish 2 Volish 2 VLOSH 2	V _{CC} 3.13 3.3 3.47 I _{CC} 1250/1250 120 Single mode fiber Transmitter I _{CC} A V _{CC} A VDISH 2 V _{CC} +0.3 V _{DISL} 0 0.8 V _{TXFH} 2 V _{CC} +0.3 V _{TXFL} 0 0.8 V _{TXFL} 0 0.8 V _{TXFL} 0 0.8 V _{TXFL} 0 0.8 V _{LOSH} 2 V _{CC} +0.3 V _{LOSH} 2 V _{CC} +0.3	V _{CC} 3.13 3.3 3.47 V Icc 280 mA 1250/1250 Mbps Icc 1250/1250 Mbps Icc 1250/1250 Mbps Icc 120 km Single mode fiber 120 km Vicc+0.3 V Q Vcc+0.3 V VDISH 2 Vcc+0.3 V VDISL 0 0.8 V VTXFH 2 Vcc+0.3 V VTXFL 0 0.8 V VLOSH 2 Vcc+0.3 V VLOSH 2 Vcc+0.3 V		

Note:

1.A (TX) + B (RX) = 280mA (Not include termination circuit)

Optical Characteristics

Parameter	Symbol	Min	Typ.	Max	Unit	Ref.
Transmitter						
Average Output Power	Pout	0		+4	dBm	
Extinction Ratio	ER	9			dB	
Conton Wandon oth)	1470	1490	1510		GCS9L0C45
Center Wavelength	λ _C	1530	1550	1570	nm	GCS9L0C54
Side ModeSuppression Ratio	SMSR	30			dB	DFB Laser(TX:1490nm)
Spectrum Bandwidth(-20dB)	σ			1	nm	DFB Laser(TX:1550nm)
Transmitter OFF Output Power	P _{OFF}			-45	dBm	
Jitterp-p	tı			0.1	UI	Note 1
Output Eye Mask	Compliar		E802.3 z (cl fety)	lass 1 laser		Note 2
			Receiver			
In such Oracianal Wanglamath	2	1530	1550	1570		GCS9L0C45
Input Optical Wavelength	$\lambda_{\rm IN}$	1470	1490	1510	nm	GCS9L0C54
Receiver Sensitivity	P _{IN}			-31	dBm	Note 3
InputSaturation Power (Overload)	PSAT	-8			dBm	

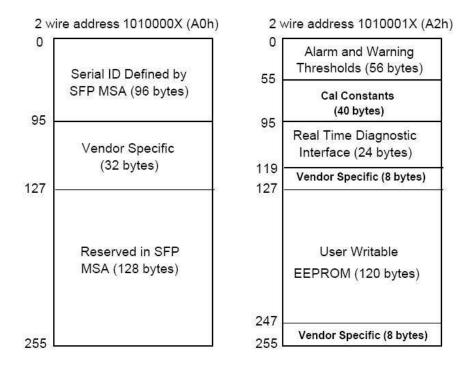


Loss of Signal Assert	PA	-45		dBm	
Loss of Signal De- assert	PD		-31	dBm	Note 4
LOS Hysteresis	PD-PA	0.5	6	dB	

Notes:

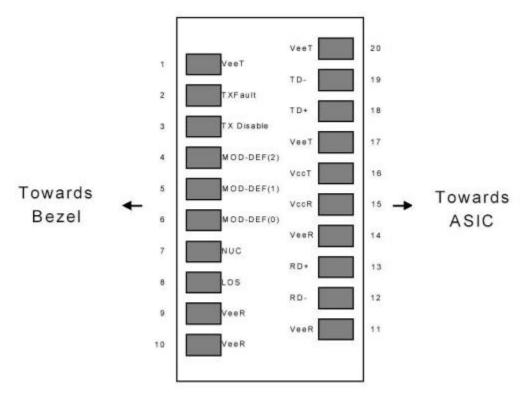
1.Measure at 2^7-1 NRZ PRBS pattern.

2. Transmitter eye mask definition.



 $3. Measured with Light source 1490nm (1550nm), ER=9dB; BER = <10^{-12} @PRBS=2^{7-1} NRZ.$

4.When LOS De-asserted, the RX data+/- output is signal output.


Digital Diagnostic Memory Map

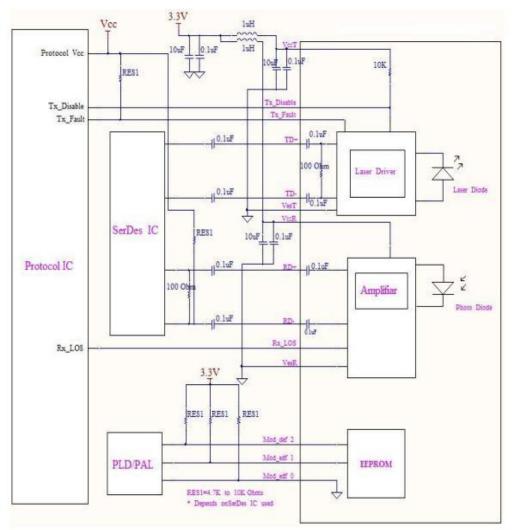
Digital Diagnostic Monitoring Information

Parameter	Unit	Accuracy
Case Temperature	°C	<u>±3</u>
Supply Voltage	V	±3%
TX Bias Current	mA	±10%
TX Optical Power	dB	±3
RX Optical Power	dB	<u>±3</u>

Pin	Symbol	Name/Description	Ref.
1	VEET	Transmitter Ground (Common with Receiver Ground)	1
2	TFAULT	Transmitter Fault.Open Drain. Logic "0" indicates normal operation.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	4
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	4
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	4
7	Rate Select	No connection required.	
8	LOS	Loss of Signal indication. Open Drain. Logic "0" indicates normal operation.	5
9	VEER	Receiver Ground (Common with Transmitter Ground)	1
10	VEER	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out(CML). AC Coupled	
13	RD+	Receiver Non-inverted DATA out(CML). AC Coupled	
14	VEER	Receiver Ground (Common with Transmitter Ground)	1
15	Vccr	Receiver Power Supply	
16	Vcct	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground (Common with Receiver Ground)	1

Notes:

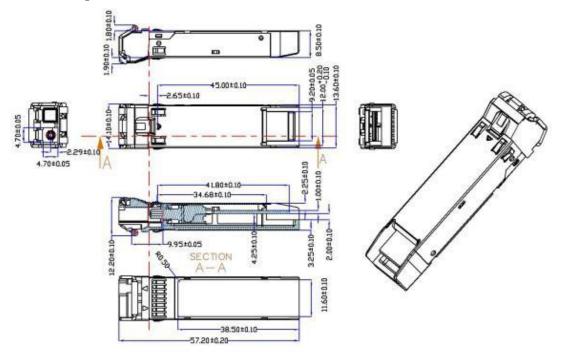

1. Circuit ground is internally isolated from chassis ground.

2.TX Fault is an open drain output, which should be pulled up with $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V to VccT/R+0.3V. When high, output indicates < 0.8V. When sensing an improper power level in the laser driver, the SFP sets this signal high and turns off the laser. TX-FAULT can be reset with the TX-DISABLE line. The signal is in LVTTL level.

3.TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with $4.7K - 10K\Omega$ resistor. Its states are: Low (0 – 0.8V): Transmitter on; (>0.8, < 2.0V): Undefined; High (2.0V to VccT/R+0.3V): Transmitter Disabled; Open: Transmitter Disabled. The TX-DISABLE signal is high (LVTTL logic "1") to turn off the laser output. The laser will turn on when TX- DISABLE is low (LVTTL logic "0").

4. Should be pulled up with 4.7K - 10K Ω on host board to a voltage between 2.0V to VccT/R+0.3V. MOD_DEF (0) pulls line low to indicate module is plugged in.

5.LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with $4.7K - 10K\Omega$ resistor. Pull up voltage between 2.0V to VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. The RX-LOS is high (LVTTL logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in LVTTL level.


Recommend Circuit Schematic

Mechanical Specifications

Order Information

	Part Number	Description
F	GCS9L0C45	SFP, BIDI, 1000Base, 1490TX/1550nmRX, SMF,120km, LC simplex, DOM